[image: image1.png]PERFECTe

Application Security

in the

eBusiness Age

Trust Online

Trust is an essential element of successful business transactions and a primary factor in choosing business partners. Yet while millions of consumers have discovered the convenience of doing business online, many do not yet trust that eBusiness technology is capable of maintaining their privacy.

Industry studies have shown that the issue of trust online — or rather, the lack of trust online — is a major hurdle that must be addressed before eBusiness can reach its full potential. According to a Boston Consulting Group survey, there is a direct correlation between eBusiness revenues and consumer concerns about privacy. In fact, the relationship is so strong that eBusiness revenues could double by 2000 if issues of privacy are successfully addressed.

Creating an online environment that consumers can trust is a serious challenge for all eBusinesses. Those that succeed in this task stand to gain a major strategic advantage in the condensed online marketplace.

Creating trust online is no easy task. eBusinesses must not only operate in an ethical manner — informing their customers as to what information is being collected and how it will be used — they must also defend the information they collect from misuse. As a result, security technologies are essential to the success of eBusiness, allowing companies to safeguard the information they collect and to protect their assets, market share and reputation.

The purpose of this white paper is to describe the eBusiness security environment and, in particular, the challenges of meeting threats at the application level.

eBusiness Security Overview

Introduction

Providing security for eBusiness is a highly dynamic problem. The rapid evolution of applications and the numerous technologies that enable eBusiness create an often changing set of requirements for eBusiness security. Security issues and the technologies used to address them can be roughly divided into three categories: data transmission and authentication, network security, and application security.

[image: image2.png]Commercial Public Doma
Products (web Software (e,
servers,etc) CGls,ew)

In-house
Development

E'h“Siness Appli catio”

No securiy ifrastruced®

Network
Secured by Firewall

Transport

Ured by EncryP™
d Aythentication

Data Transmission & Authentication

eBusiness requires that sensitive information be transmitted over the Internet. Unfortunately, as a public network, the Internet is a very insecure medium for transmitting sensitive data.

Each individual eBusiness transaction is comprised of many data packets. A data packet sent from one point to another must pass through numerous intermediate points (nodes) before reaching its destination, and each of the many packets comprising a single transaction may take a different route. At every one of the intermediate nodes through which they pass, packets are vulnerable to interception by hackers.

This problem is typically solved using technologies such as Secure Socket Layer (SSL) and Virtual Private Networking (VPN) to encrypt data and create a secure channel of communication between interacting parties. Encryption keys are negotiated in a secure manner using Public Key Infrastructure (PKI), which allows any two peers using compatible products to establish their own private, secure channel.

In many cases, a higher level of assurance regarding the specific identity of the parties must complement data encryption. There are several common mechanisms to establish this assurance, including user names and passwords, digital certificates, PKI, smartcards, biometrics, and other authentication devices. Each measure requires a tradeoff between the level of assurance — user name and password being the lowest — and the deployment complexity – which reaches its maximum with biometrics and authentication devices.

Network Security

Delivering data with seamless connectivity between any two points on the Internet requires a great deal of underlying networking logic. This logic is provided by the Internet Protocol (IP), and overlying protocols such as TCP, UDP, ICMP, etc. These protocols define everything from the addressing scheme to routing information and control directives. The complexity of these data transmissions provides fertile ground for hackers searching for loopholes. Any computer connected to the Internet is potentially vulnerable to a wide range of attacks aimed at exposing weaknesses in the computer’s network interface and configuration. Such attacks can expose the computer’s internal resources to misuse, theft or destruction.

The solution to these threats comes in the form of firewalls and intrusion detection tools. Firewalls use built-in “network knowledge” to block network-level openings, leaving only required pathways open. For example, an organization may use a firewall to block all incoming traffic except for email, and all outgoing traffic, except for email, telnet and web browsing. Intrusion detection tools are applications or devices designed to identify network-level attack patterns, react to them, and notify system operators.

Firewalls and intrusion detection tools provide robust security against hacker attacks that seek to take advantage of the complexity of network connectivity.

Application Security

Application security is one of the most challenging aspects of eBusiness security. Put simply, application-level security ensures that eBusiness applications interact with end users only in ways that were intended by the application’s developers. Application-level security is focused on preventing the unauthorized use of an eBusiness’ resources or customer information by hackers attempting to gain access to the eBusiness network directly through the application itself. Application-level hacks typically exploit weaknesses in HTML coding, Common Gateway Interfaces (CGIs), or in third party products such as web servers or scripts. The following pages will more fully describe the problem of application security and a general approach to solving the problem.

Application security

Definition

All application software contains bugs. From a simple script to an operating system, no software program is capable of flawlessly performing all of its intended functions or able to correctly handle every possible input.

Not surprisingly, software bugs cause applications to behave in unexpected ways. Bugs can interrupt any normal operation or they can go unnoticed for a long time, eventually manifesting themselves as application crashes or other odd responses.

In eBusiness applications, these odd responses are essentially loopholes that may be exploited by an intruder to bypass the logic and flow of the application and break into the system. The consequences of loopholes in eBusiness applications go much further than crashes or “funny” behavior. A hacker can use them to gain access to private customer information (such as credit card numbers and personal financial or medical information), reveal sensitive business data (such as partnerships and trade secrets), deface the company web site, and/or perform numerous other attacks.

Preventing hacker exploitation by making an application resistant to attacks is known as Application security.
Exploiting Application Loopholes

When examining application level security in the eBusiness environment, it is important to recognize that hacking is accommodated by the browser, and therefore takes place within the HTML and URL’s communicated between the browser and web server. Described below are some common examples of how hackers may use this approach to undermine the integrity of an application.

Unexpected input
 Modification of fixed data

Several types of data, such as hidden fields and form-field settings, are assumed by the application to be fixed. By changing fixed data before submitting the request the hacker may, for example:

 Buy Any Item For Any Price

Many applications store price-related information in hidden fields. By modifying these hidden fields it is often possible to change the price charged for an item.

 Redirect Application Output

Many applications use hidden variables to store names of output files and recipient addresses. By changing the output file name, an application may be manipulated to write its output to a different file on the server file system. This can be used to clobber files, deface sites and install viruses or malicious software.

Take, for example, an application that allows the user to enter a comment as part of a customer survey. Upon submission, this comment is appended to a collective comments file, which is identified in a hidden field. Changing this hidden field to point to the main page of the site may provide the hacker with the means to modify the home page contents, thus defacing the site. It may also be possible to reveal internal application information if the application sends the form via email to an internal recipient whose address is stored in a hidden field. By simply changing the recipient address, a hacker can send the form to his own account (along with any application-appended internal information).

 Buffer Overflow

The buffer overflow technique involves sending large amounts of data that exceed the quantities expected by the application within a given field. When executed with precision and deliberation, such attempts may cause the application to abandon its normal behavior and begin executing commands on behalf of the attacker. This can be especially dangerous when the application is configured to have root (super user) permissions on the system. In this case, the attacker can operate as the system administrator of the web server and its environment.

 Malformed Requests

 Abusing CGIs

It is very common to find CGIs that are implemented using a script language. Since scripts involve runtime evaluation of expressions, it may be possible to modify evaluation results by manipulating variable values.

For example, if a CGI named ‘search’ contains the statement:

‘echo $query’, calling ‘search?query=*’

calling for it will result in displaying the directory contents because the interpreter performs variable expansion before filename glob-ing. Consequently, ‘echo $query’ will be first expanded to ‘echo *’ (variable expansion) and then filename glob-ing will replace the ‘*’ with the contents of the directory.

Another example is a script called ‘user_info’ which contains ‘eval finger $user’. When called using:

‘user_info?user=%3B%0Acat%20/etc/passwd’

this script will print the contents of /etc/passwd – the system password file.

 Putting HTML code in text fields

This technique involves replacing a text field with HTML code containing JavaScript. If the content of this field is ever displayed back to the user, it will result in the execution of the JavaScript function on the user’s machine. This JavaScript can be used as an agent to collect valuable information, such as passwords entered by the user via the keyboard, and then returned to the hacker.

 Server side includes

This is another use of embedding HTML code in a text field, this time with server-side includes. Server-side includes are directives to the web server that may be used to include the contents of another file in the page. This may enable the hacker to gain access to files that cannot normally be viewed in the web site.

For example, let us assume a hacker created an account with the following server-side include directive as the name:

‘<!--#exec /bin/cat /etc/passwd -->’

When generating an account information page for this account, the application will embed this server-side include directive into the page, and then the web server will execute the command:

‘/bin/cat /etc/passwd’

This will result in embedding the /etc/passwd password file inside the HTML page that was supposed to contain only account information. The page will then be transmitted to the hacker.

 Out-of-bounds Data

Many “forms” use selection lists that allow the user to select one value from a pre-defined set. By sending values outside the boundaries of this list — for example sending 11 when the list is 1-10 — the hacker may cause the application to attempt to access data outside an array’s boundaries. This may have similar consequences to buffer overflow.

 Poisoned Cookies

A hacker may tamper with a cookie stored on his computer, and send it back to the web site. Since the application does not expect changes to the cookie, it may process the poisoned cookie, with effects similar to those of changing fixed data fields, such as price changes or output redirection.

 Omissions and Additions of Parameters

In cases where an application calls a CGI in the following manner:

‘/cgi-bin/perl.exe?subscribe.pl’,

a request of the form:

‘/cgi-bin/perl.exe?&-e+unlink+%3C*%3E’

will invoke a Perl command that removes files from the web server.

For example, normal usage of a CGI that retrieves files from the file system is:

‘/cgi-bin/get?/html/customers.html’.

Another way of using this CGI is:

‘/cgi-bin/get?../../../etc/passwd’

 to retrieve a listing of the user accounts on the web server.

In most cases, the actual functionality of the eBusiness application is not limited to what is presented on the web site. By using a combination of information gathering and trial & error techniques, a hacker can uncover and exploit hidden functionality. Consider, for example, an application that presents billing details for a specific user. The request is formatted as follows:

‘/bin-cgi/retrieve?userid=123&account=11&sid=823647328’.

The CGI ‘retrieve’ translates this into an SQL request to retrieve the information from the database:

‘SELECT * FROM acct WHERE userid=123 AND account=11’

A simple way to retrieve the entire database may be using:

‘/bin-cgi/retrieve?userid=123&account=11%20OR%201=1&sid=823647328’

This will produce the SQL expression:

‘SELECT * FROM acct WHERE userid=123 AND account=11 OR 1=1’

 Which is logically equivalent to: ‘SELECT * FROM acct’.

 This functionality is not included in the application definition.

3rd Party Code Exploits

It is very common for public domain CGIs to support a wide selection of invocation parameters in order to make them as general purpose as possible. For example, a form-mailing utility could be used to get environment information from the web server by supplying additional parameters that are not used by the application. Since the source code and documentation of public domain CGIs are readily available to the general public, it is very easy for hackers to examine their capabilities and search for weaknesses.

Web server related-loopholes

 Open Directories

Any directory on the web server not configured to be protected may be viewed using a simple request. For example, if a financial report can be accessed after paying for it by browsing to

http://www.xyz.com/reports/pay-only/report1.html

then browsing

http://www.xyz.com/reports/pay-only/
will yield a list of all reports in the pay-only directory, if directory browsing was left on accidentally.

This may reveal a great deal about the structure of the web server and sometimes lead to the location of sensitive data such as password files, user information lists, transaction lists and so on.

· Known Bugs Exploited

Every kind of web server has a set of typical “weak spots” that may be used to attack the system if not handled correctly by the site’s system administrator. There is an endless stream of such "weak spots" — whenever a problem is found and fixed by a vendor, another one is published by the hacker community. For example:

 One vendor’s web server treats a set of strings as file type information. Particularly, the suffix ‘::$DATA’ indicates a data file that should be displayed rather than executed. This means that calling: ‘validate_user.asp:$DATA’ will display the content of the CGI ‘validate_user’ rather than executing it. Of course, with access to the source it is much easier for the hacker to find the loopholes within an application.

 A default behavior of another web server was such that sending a message containing the string: ‘/?PageServices’ would provide a directory listing, even if the specific directory was configured to be protected.

 Default CGIs

It is common for web servers to bundle debug and sample code in their default installation. One widely used server provided a CGI named ‘test-cgi’, which could be used to browse the file system. Another included a sample CGI named ‘showcode.asp’ that could list the contents of files. Since these are standard parts of commercial web servers, it is very easy for hackers to gain access to their source and study them in great detail. This was the case with a CGI named ‘phf’ that was bundled with a commercial web server. Source inspection revealed it contained a statement similar to ‘eval finger $user’, which is discussed above.

Application Flow Subversion

Another common hacking technique is to bypass certain stages of an application. For example, an application lets the user log in and execute a transaction in his account:

‘/cgi-bin/transfer_money?account=…”.

In many cases, by careful examination of the application, a hacker may discover how to generate legal ‘transfer_money’ requests without going through the login process. Many applications will allow such a legal request without enforcing proper login.

Using back doors and debug options

 Debug Features

During the development of an eBusiness application, it is very common to use auxiliary CGIs for internal use. If accidentally left in the production environment, these CGIs can provide hackers with easy-to-exploit vulnerabilities. For example, an eBusiness store programmer may test a shopping cart mechanism by using a debug CGI to add any item for any price. If not removed by the programmer before the application is placed in a production environment, the CGI can be used by hackers to place real orders with false prices.

In many cases, the debug features are actually embedded inside the application code, where they are likely to remain even after the application moves to production.

 Back Doors

Back doors can be left inside the application by a corrupt developer, allowing him later to access the application and the ability to direct the application to perform illegal activities. Back doors have been found in many programs. In one particular case, banking software was made to route some of the bank customers' money to a developer’s account.

 Directory Listing Files

It is common for web server file systems to contain directory listing files created by backup utilities and various log functions. These can be a valuable source of information for the hacker to learn about the structure of the system, its activities and resources. Further exploration often results in the exposure of files that can contain customer lists, business partners lists, log files with user passwords and other valuable information.

 Backup Files

Backup files are the result of continuous application development. Old versions of CGIs are saved, both by the programmer and by the editor backup feature. The subsequent vulnerability involves the names of the backup files:

If, for example, the web server is configured to execute files of type ‘.pl’, calling ‘verify_account.pl’ will cause the execution of this CGI. However, if the editor has created a backup version of this file under the name: ‘verify_account.pl~’, the suffix ‘.pl~’ is not recognized by the server, and therefore this file is not executed, but rather sent to the user as is. Again, this will provide the hacker with the source code of the CGI, thus increasing the probability of a successful attack.

Impersonation

 Breaking Encryption

Many sites encrypt sensitive information such as user names, passwords and session tokens using algorithms developed in-house. Such algorithms usually do not go through rigorous mathematical inspection making them more susceptible to breaking. Using iterative methods, a hacker can often reverse engineer the encryption algorithm and synthesize tokens at will.

 Session Hijacking

Since the HTTP protocol does not have sessions, the application must maintain its own session, if required. This is usually done using tokens stored in a cookie or in the URLs. Many applications utilize unsafe tokens that can be stolen and used by another party for identification purposes. Since the token often provides the user id (or an equivalent), it enables the hacker to assume the rights of another person as long as this token is valid. Stealing the token can be done in any number of ways - such as tapping the communication, reading it from the cookies of history files, installing a Trojan horse on the client browser and so on.

 Changing User ID

A very common and simple method used by eBusiness applications to identify a specific user is through a UID parameter submitted to the relevant CGIs. For example:

‘/cgi-bin/get_user_info?uid=10001’.

Due to the lack of additional protection, often getting other users’ information is as simple as enumerating on various UIDs. Using this method a hacker may easily produce a list of the company’s customer base, including credit cards, email addresses and sensitive personal information.

Summary

This is but a small sample of an infinite number of potential loopholes an eBusiness application must address. Nevertheless, it is enough to demonstrate the diversity and unpredictability of the security faults that an application can possess. It is evident that no part of the application is immune to flaws, starting from the application code, through third party modules, to the web server and finally its configuration.

Classic Approach to Application Security

Overview

Attempting to overcome the problems and exploits described above places a tremendous burden on every stage in the development cycle:

· Design — Designing application functionality with security in mind leads to a more complex application and extends development time. In addition, designing a secured application requires specific expertise as well as expanded resources.

· Implementation — A more complex design also complicates implementation. Implementing a secured application requires the use of defensive coding, i.e. embedding checks and balances, to make sure an implementation error will not cause a security hazard.

· Testing — Other than functionality testing, an entirely new category of stress testing needs to be implemented. The application should be placed in hostile environments and attacked with various tests and inputs designed to expose its loopholes.

 Deployment — Careful attention to detail is crucial in this stage, as the configuration of each component should be checked and verified to disallow any exploit.

Examples

 Preparing for unexpected input

Each application has multiple HTML pages associated with it and each can generate several URLs. Each URL that returns to the web server from the browser must be validated in several aspects, including (among others): field length, field content and valid character sets.

This implies that each field on the page has been verified upon reentry to the web server. Verification must confirm that its length has not been modified, that the contents are valid and that no data is sent which could have a negative impact on the web servers’ execution. In addition, certain fields may be mandatory while others are not and programmers must code rules to verify the existence of each field.

It is also necessary to check each returning field and validate that it is allowed to be sent and will not cause damage to the application.

In order to code Application Security in an effective manner, programmers must develop a data dictionary that outlines all fields, length, description, and page relationship. This includes hidden fields as well as visible fields. A code to manage the validation of these fields must accompany each transaction, therefore requiring each page to be individually checked and validated. If the site has 40 pages there will be 40 checks associated with the site which validate the data input. Each page modification in the site subsequently requires modification to the validating CGI program and data dictionary.

Coinciding with the programmatic validation of fields sent to the web server, it is also necessary to validate cookies. Cookies are under the same constraints that fields are when considering validation. Each cookie must have a set of rules associated with it and have page associations that verify the possible combinations allowed upon receipt.

 3rd Party Code Hardening

To effectively secure a web site, it becomes necessary to develop the same data validation routines for third party code as done for in-house developed pages. Such a task involves reviewing the source code of the 3rd party program in an attempt to identify any potential problems and making heavy modification to add the appropriate kinds of protection.

 Web server related-loopholes

While it is impossible even to check for all problems that may exist at the web server, the known problems should be fixed, such as:

 Open directories need to be closed

 All patches should constantly be applied as they become available

 Dangerous features such as server-side includes should turned off

 Default CGIs should be deleted

All these solutions should be repeatedly applied to all web servers on a routinely basis. Forgetting even one problem on one web server can make all the difference to a hacker.

 Constraining Application Flow

Since HTTP is stateless by nature creating an application with good flow enforcement is a task that usually involves designing and maintaining a database of open sessions. Designing and implementing such a mechanism can turn into a project of its own, requiring handling sessions across multiple servers and other complex issues. Maintaining such a flow also requires eliminating any static pages, as no flow enforcement can be applied to such pages.

 Closing Back Doors and Debug Options

This is a task that should be carefully performed prior to each release. For example:

 Remove the auxiliary CGI that allows the execution of purchasing transactions while determining the item price.

 Disable all the ‘QA accounts’ used for testing the application.

 Disable the debug flag that instructs the CGI to dump its environment variables.

 Impersonation

Designing a secured algorithm and coding it properly is one of the well-known ways to prevent impersonation. However, it requires deep security and encryption expertise for a correct implementation.

Classic Application Security vs. The eBusiness Environment

To better understand the implications of classic Application Security it is necessary to understand the development environment and the constraints commonly affecting its operation. The fast and dynamic eBusiness environment creates demands — accelerated by the speed of the Internet industry and competitive pressures — that traditional development organizations may not accustomed to.

eBusinesses must develop a cutting edge site to attract attention over the Internet. To understand the challenges associated with such a business plan one must first understand the needs of the development team. Each team of talented programmers, who are hard to attract and retain, has to operate within many of the following constraints:

Rapid Development

Often the application is developed and deployed in a 90-day time frame followed by releases on a weekly basis.

The development group is motivated to put in long hours in order to meet the deadline, leaving minimum time for proper design, design reviews and preliminary testing. The focus naturally is on the application’s functionality, resulting in little verification of the code. Such verification should include, but not limited to, boundary condition checks and data correctness. The rapid pace of the marketplace increases the demand for new and updated functionality to keep the eBusiness site competitive.

Even as companies increase headcount, the dynamic nature of the web-site means security is usually checked only on a cursory basis. Speed of deployment puts tremendous pressure on the development team to get the site operational within the time allotted. QA engineers typically check the functionality of the site with little time left to validate all the potential security loopholes. The QA environment, which is not yet automated, puts pressure on QA engineers to keep up with the development pace. The fact there are no tools to test the security aspects of an application, combined with lack of QA resources, usually result in a QA team focused almost entirely on the application functionality. QA often spends little or no time looking for potential security breaches.

Use of third party codes and public domain tools

From the security aspect development tools and third party codes fall into a significant category: those things over which you have little or no control. Development may use some public domain CGIs for common tasks like shopping cart management and mailing user-filled forms to sales and support. Being general purpose, these CGIs make extensive use of hidden fields for storing client-side data. It is a common practice not to reinvent any process that is repetitive and mundane, thereby improving upon the development time line and moving the product to market more quickly. Typically, due to lack of time, the development department uses these CGIs as-is without evaluating them from the security standpoint.

Complex Applications

It is not uncommon for an eBusiness application to include millions of lines of code. Such complexity allows for many loopholes in the building phase as well as in the deployment phase. It also cultivates unexpected inter-module interactions, dramatically increasing the possibility of a loophole.

Revenues Rule

The 90 day development cycle has implied constraints for the programming team. Marketing may have product introductions timed to match the availability of the site, advertising is certainly tied into the process and, consequently, revenues are projected based upon the availability of the site. This implies a strict timeline and set of milestones that are required to meet revenue goals, but often results in insufficient Application Security.

Internet Application Security

A Needed Infrastructure

The eBusiness environment has outgrown the stage where application security can be viewed as a minor by-product of the application development process. To achieve application security without affecting their development costs or time-to-market, eBusinesses require an Internet Application Security infrastructure. This infrastructure is a dedicated, universal, plug-and-play solution that is independent from the eBusiness application itself, eliminating the need to identify and remedy each and every security problem during the application development process. Such infrastructure can provide a substantial ROI for eBusinesses by reducing development costs and cost of ownership, by increasing customer transactions and loyalty and by limiting down-time. With an application security infrastrucure in place eBusinesses can devote their limited and scrace resources to their core, revenue generating applications, while gaining competitive advantage by earning the trust of customers in the online marketplace.

